
ABI-U-NA-N-003
6 March 1998

SOFTWARE DESIGN DOCUMENT

FOR THE

AIRBORNE BROADCAST INTELLIGENCE (ABI) SYSTEM

Contract Number F19628-95-C-0143

6 March 1998

Prepared for:
Electronic Systems Center

Air Force Materiel Command
50 Griffiss Street

Hanscom Air Force Base, Massachusetts 01731-1619

Prepared by:

Lockheed Martin Command Control Systems
9970 Federal Drive

Colorado Springs, CO 80921

Distribution limited to U.S. Government agencies and their
contractors; Critical Technology, 27 July 1993. Other requests

for this document shall be referred to ESC/ACU.
50 Griffiss Street, Hanscom AFB, MA 01731-1619

This Page Intentionally Left Blank.

ABI-U-NA-N-003
6 March 1998

ii

TABLE OF CONTENTS

SECTION PAGE

1.0 SCOPE...1-1

1.1 IDENTIFICATION ... 1-1
1.2 SYSTEM OVERVIEW ... 1-1
1.3 PURPOSE .. 1-1
1.4 DOCUMENT OVERVIEW.. 1-1

2.0 REFERENCED DOCUMENTS ..2-1

2.1 GOVERNMENT DOCUMENTS ... 2-1
2.2 NON-GOVERNMENT DOCUMENTS... 2-1

3.0 DESIGN OVERVIEW..3-1

3.1 HARDWARE SUITE.. 3-2
3.2 ABI SOFTWARE ... 3-3

4.0 DETAILED DESIGN...4-1

4.1 ABI RUNTIME ENVIRONMENT FUNCTIONAL AREA DESIGN .. 4-1
4.1.1 ABI Runtime Environment Architecture...4-1
4.1.2 MSTS Under the CIS Umbrella ..4-1

4.2 PERFORMANCE TRACK PROCESSOR CACHE FUNCTIONAL AREA DESIGN... 43
4.2.1 Performance Track Processor Cache Architecture..4-3
4.2.2 PERF-TP CACHE Processing Description..4-3

4.3 USER INTERFACE FUNCTIONAL AREA DESIGN .. 4-4
4.3.1 User Interface Architecture..4-4
4.3.2 UIF Functional Area Processing Description..4-4
4.3.3 UIF Functional Area Changes ...4-6

4.4 DATA BASE-AA/MSTS INTERFACE FUNCTIONAL AREA DESIGN.. 4-7
4.4.1 Data Base-AA/MSTS Architecture ...4-7
4.4.2 DTB-AA/MSTS Interface Processing Description..4-8
4.4.3 Error Handling...4-10
4.4.4 DTB-AA/MSTS Interface Functional Area Changes ..4-10

4.5 DATABASE - INTEGRATED DATA BASE SNAPSHOT FUNCTIONAL AREA DESIGN.............................. 4-10
4.5.1 IDB Snapshot Architecture...4-11
4.5.2 DB-IDB Snapshot Processing Description ..4-11
4.5.3 Error Handling...4-12
4.5.4 Functional Area Changes...4-12

4.6 MESSAGE DESIGN ... 4-12
4.6.1 Message Functional Area Architecture...4-12
4.6.2 MSG Functional Area Changes ... 4-14

4.7 INTEGRATED COMMUNICATIONS PROCESSING FUNCTIONAL AREA DESIGN 4-15
4.7.1 Integrated Communications Processing Architecture..4-15
4.7.2 IOP Processing Description...4-15

4.8 INTEGRATED VISUAL CONTROL (MSTS) FUNCTIONAL AREA DESIGN ... 4-16
4.8.1 Integrated Visual Control (MSTS) Architecture..4-16
4.8.2 Integrated Visual Control (MSTS) Processing Description ..4-17

4.9 COUNTRY OUTLINE VISUAL (WDBMAP) FUNCTIONAL AREA DESIGN .. 4-18
4.9.1 Country Outline Visual (WDBMAP) Architecture..4-18
4.9.2 Country Outline Visual (WDBMAP) Processing Description ...4-18

ABI-U-NA-N-003
6 March 1998

iii

4.10 ADRG CHART VISUAL (ADRGDSP) FUNCTIONAL AREA DESIGN ... 4-19
4.10.1 ADRG Chart Visual (ADRGDSP) Architecture ...4-19
4.10.2 ADRG Chart Visual (ADRGDSP) Processing Description ..4-19

4.11 IMAGERY VISUAL (EOSATDSP) FUNCTIONAL AREA DESIGN.. 4-20
4.11.1 Imagery Visual (EOSATDSP) Architecture...4-20
4.11.2 Imagery Visual (EOSATDSP) Processing Description ..4-20

4.12 3D FLYING VISUAL (FLY) FUNCTIONAL AREA DESIGN.. 4-21
4.12.1 3D Flying Visual (FLY) Architecture ...4-21
4.12.2 3D Flying Visual (FLY) Processing Description..4-21

4.13 SATELLITE ORBIT VISUALIZATION (OV) FUNCTIONAL AREA DESIGN ... 4-22
4.13.1 Satellite Orbit Visualization (OV) Architecture ...4-22
4.13.2 Satellite Orbit Visualization (OV) Processing Description ...4-22

4.14 RADIO CONTROL (ZEBRA) FUNCTIONAL AREA DESIGN .. 4-23
4.14.1 Radio Control (ZEBRA) Architecture...4-23
4.14.2 Radio Control (ZEBRA) Processing Description ..4-23

4.15 SYMBOL CONTROL (SYMFILTER) FUNCTIONAL AREA DESIGN.. 4-23
4.15.1 Symbol Control (SYMFILTER) Architecture..4-24
4.15.2 Symbol Control (SYMFILTER) Processing Description ..4-24

4.16 AREA OF INTEREST (AOI) DEFINITION/CONTROL AOI FUNCTIONAL AREA DESIGN 4-24
4.16.1 Area of Interest (AOI) Definition/Control AOI Architecture..4-25
4.16.2 Area of Interest (AOI) Definition/Control AOI Processing Description4-25

4.17 ROUTE DEFINITION/CONTROL (ROUTE) FUNCTIONAL AREA DESIGN .. 4-26
4.17.1 Route Definition/Control (ROUTE) Architecture...4-26
4.17.2 Route Definition/Control (ROUTE) Processing Description ..4-26

4.18 PREFERENCE SELECTION (PREFERENCE) FUNCTIONAL AREA DESIGN 4-27
4.18.1 Preference Selection (PREFERENCE) Architecture..4-27
4.18.2 Preference Selection (PREFERENCE) Processing Description ..4-27

4.19 SATELLITE SELECTION (SATSELECT) FUNCTIONAL AREA DESIGN... 4-28
4.19.1 Satellite Selection (SATSELECT) Architecture ..4-28
4.19.2 Satellite Selection (SATSELECT) Processing Description...4-28

4.20 TRACK AND COMMUNICATIONS STATUS (STATUS) FUNCTIONAL AREA DESIGN 4-29
4.20.1 Track and Communications Status (STATUS) Architecture...4-29
4.20.2 Track and Communications Status (STATUS) Processing Description4-29

4.22 ARCHIVE MANAGEMENT (ARCHIVE) FUNCTIONAL AREA DESIGN ... 4-29
4.22.1 Archive Management (ARCHIVE) Architecture...4-29
4.22.2 Archive Management (ARCHIVE) Processing Description ...4-30

4.23 EXERCISE INPUT (EXERCISE) FUNCTIONAL AREA DESIGN... 4-30
4.23.1 Exercise Input (EXERCISE) Architecture ..4-30
4.23.2 Exercise Input (EXERCISE) Processing Description...4-30

4.24 MATT RADIO FUNCTIONAL AREA DESIGN... 4-31
4.24.1 MATT Radio Architecture ...4-31
4.24.2 MATT Radio Control Processing Description ...4-32

4.25 ANGLE TO SATELLITE COMPUTATION (FINDGEOSAT) FUNCTIONAL AREA DESIGN................... 4-34
4.25.1 Angle to Satellite Computation (FINDGEOSAT) Architecture ..4-34
4.25.2 Angle to Satellite Computation (yyy) Processing Description ...4-34

4.26 EXPERT FUNCTIONS FUNCTIONAL AREA DESIGN .. 4-34
4.26.1 Expert Functions Architecture ...4-35
4.26.2 Expert Functions Processing Description..4-35

4.27 CLIENT WORKSTATION SUPPORT (DATASVC, CLIENTSVC) FUNCTIONAL AREA DESIGN 4-35
4.27.1 Client Workstation Support (DATASVC, CLIENTSVC) Architecture4-35
4.27.2 Client Workstation Support Processing Description..4-35

4.28 SYSTEM SHUTDOWN FUNCTIONAL AREA DESIGN ... 4-36

ABI-U-NA-N-003
6 March 1998

iv

4.28.1 System Shutdown Architecture ...4-36

5.0 ACRONYMS...5-1

LIST OF APPENDICES

APPENDIX PAGE

A REQUIREMENTS TRACEABILITY .. A-1

LIST OF TABLES

TABLE PAGE

Table 4.3.3.4-1 New and Modified CIS Desktop Files ..4-7
Table 1 Requirements...A-2
Table 2 Requirements - Test Case Cross Reference ..A-7

LIST OF FIGURES

FIGURE PAGE

Figure 3.0-1 ABI System Architecture..3-2
Figure 4.4.1-1 DTB-AA/MSTS Interface ..4-8
Figure 4.6.1-1 ABI Architecture ..4-13

ABI-U-NA-N-003
6 March 1998

v

This Page Intentionally Left Blank.

ABI-U-NA-N-003
6 March 1998

1-1

1.0 Scope

1.1 Identification

This Software Development Design Document (SDD) specifies the Computer Software
Configuration Item (CSCI) design for the Airborne Broadcast Intelligence (ABI) prototype
system. This SDD describes in detail each of the major functional areas, the architecture of the
software, the data structures, and all associated processes.

1.2 System Overview

The ABI system consists of numerous software programs, running in concert to provide a
situation awareness system that requires little operator setup and no operator interaction during
use. The system follows the user around the world, using the attached Global Positioning System
(GPS) receiver to locate where in the world the user is, and displays the maps, charts, and
country outlines that the operator has selected in the scales and orientation selected. (GPS
functionality is for AMC only). External events and threat definition messages are received by
the system, correlated, and displayed on maps selected by the operator so that the situation can be
visually assessed.

The ABI system consists of components from the Combat Intelligence System (CIS) Automatic
Associator (AA) 5.0 baseline and the Multi Source Tactical System (MSTS). The CIS AA 5.0
components will be renamed and referred to as the ABI Data Fusion Engine, and the MSTS
components will be renamed and referred throughout this document as the ABI Displays.
Sections 4.1 through 4.6 explain the ABI Data Fusion Engine and Sections 4.7 through 4.28
explain the ABI Displays .

1.3 Purpose

This SDD is written with the objective of explaining what each CSCI does, how the components
interrelate, and describe the software design and high levels of the ABI system. This document
will provide other professionals an understanding of the system and assist in future development
efforts.

1.4 Document Overview

This document is organized as follows:

Section 1, Scope, consists of the system identification, a brief description of the ABI system, and
a summary of the purpose and contents of this SDD.

Section 2, Referenced Documents, contains a list of documents referenced in this SDD.

Section 3, Design Overview, describes the overall architecture of the ABI system.

ABI-U-NA-N-003
6 March 1998

1-2

Section 4, Detailed Design, describes the functional area, architectural design, and processing of
each functional area.

Section 5, Acronyms.

Appendix A, Requirements Traceability, contains a traceability matrix which serves as the
requirements baseline for the development of the ABI system.

ABI-U-NA-N-003
6 March 1998

 2-1

2.0 Referenced Documents

2.1 Government Documents

This section lists by document number, title, date, and classification all documents referenced in
preparing this SDD. It also identifies the source of all documents not available through normal
Government stocking activities.

a. ABI-U-NA-N-001, Software Test Description for the Airborne Broadcast Intelligence (ABI)
System, 19 January 1998 (Revision 4); Electronic Systems Center, Air Force Materiel
Command, 50 Griffiss Street, Hanscom Air Force Base, Massachusetts 01731-1619. (U)

b. ABI-U-NA-N-002, Software User’s Manual for the Airborne Broadcast Intelligence (ABI)
System (Draft), 15 August 1997; Electronic Systems Center, Air Force Materiel Command,
50 Griffiss Street, Hanscom Air Force Base, Massachusetts 01731-1619. (U)

c. DOD-STD-2167A, Defense System Software Development, 29 February 1988; Department
of Defense, Washington, DC 20301. (U)

d. DIAM 50-4, Security of Compartmented Computer Operations, 24 June 1980, Defense
Intelligence Agency, Washington, DC 20340-4032. (C)

e. JCS PUB 6-04.22 (I-O) and JCS PUB 6-04.23 (P-Z), U. S. Message Text Formatting,
(USMTF) Program, USMTF Message Preparation Instructions, 1 October 1990; Defense
Intelligence Agency, Washington, DC 20340-4032. (U)

f. Statement of Work for Airborne Broadcast Intelligence (ABI) Theater Battle Management
Core Systems (TBMCS), 17 March 1997; Lockheed Martin Command and Control Systems,
Colorado Springs Division, 9975 Federal Drive, Colorado Springs, Colorado, 80921. (U)

2.2 Non-Government Documents

a. Motif Style Guide, Open Software Foundation, Incorporated, 1991; Prentice-Hall,
Incorporated, Englewood Cliffs, New Jersey 07632.

b. OSF/Motif Documentation - Figures, 1990; OSF Corporation, Cambridge, Massachusetts
02142. (U)

ABI-U-NA-N-003
6 March 1998

3-1

3.0 Design Overview

The ABI System Architecture as shown in Figure 3.0-1, integrates strategic intelligence, tactical
intelligence, and GPS broadcasts to enhance real time threat awareness/avoidance. (GPS is used
for AMC only). ABI serves a wide user base and supports flexible mission demands. ABI uses
the CIS AA as its correlator and integrates the look and feel of MSTS.

The ABI system is a situation awareness capability designed to receive, process and display real-
time intelligence and operational information overlaid onto imagery and charts. The technology
includes flight following, two and three-dimensional threat displays, terrain perspective views
and mission preview.

The system loads and stores aeronautical charts, multispectral and high-resolution imagery. Near
real-time Signal Intelligence (SIGINT) and Radio Detection and Ranging Intelligence (RADINT)
is received in-flight and its symbology is overlaid onto stored images and charts, indicating
parameters and lethality ranges in two and three dimensional representations. Flight following
includes GPS input/update. Off-line mission rehearsal fly-through can be generated as can
interactive, operator-controlled fly-over.

ABI-U-NA-N-003
6 March 1998

3-2

Radio

ABI
Correlator

ABI
Updates

ABI Function Calls
(insert, update, delete, link, unlink)

Contacts
Tracks (3 levels)

Associations

I/O Status
User Values

Shared MemoryShared Memory

Status
Program

Display
Program

Control
Program

Display
Program

GPS
Following

TIBS
TRAP

TADIL-A

GPS
GPS

Ethernet

AADB

Control

IDB

S-Bus

TIBS
TRAP
TADIL-A

GPS

I
O
P

P
r
o
g
r
a
m

C
o

s

P
r
o
c
e
s
s Message

Process

Tracks

m
m

Figure 3.0-1 ABI System Architecture

3.1 Hardware Suite

The ABI hardware suite consists of a single processor Sun Ultra 2 workstation with the Creator
3D Graphics System.

Additional hardware consists of:

QuadZebra radio or MATT radio

Supporting external cryptos to include two KGR-96 and a KG-40A (to be enabled
internally in fiscal year 98)

Crypto key mats for appropriate inputs

Crypto fill device CZY-10, KIK-13, or KOI-18

ABI-U-NA-N-003
6 March 1998

3-3

3.2 ABI Software

The ABI software consists of the following:

CIS 1.2 / AA 5.0

ABI Database (AA Build 22.4 DB)/SYBASE IDB

Solaris 2.5.1 (May 1996)

ABI Display Software (MSTS)

Modular UNIX code, C-language, OSF/Motif

ABI-U-NA-N-003
6 March 1998

4-1

4.0 Detailed Design

The ABI system consists of a correlation engine, visualization software, configuration and control
software, a collection of data files (world data bank outlines of countries ADRG chart files, imagery
files, Area of Interest (AOI) definition files, route definition files, and satellite ephemeris data files).
Each ABI system running on a workstation also has a collection of private data files describing how
the operator has setup the ABI visualization (which symbols, routes, AOIs are visible) and user
preferences (line widths, symbol sets, units of measure). The visualization data is also kept in the
memory of each workstation, in a shared memory segment that all programs running on that
workstation can read and update. The shared memory segment allows for well integrated visualization
operations that are very fast.

This detailed design describes each major functional program that is a part of ABI. The order of the
ABI Displays programs, discussed in Sections 4.7 through 4.28, are in the order that the programs are
started on the ABI system or in the control banner pull down.

4.1 ABI Runtime Environment Functional Area Design

Sections 4.1.1 through 4.1.2.5 describe the required modifications to the operational environment to
incorporate the CIS/AA 1.2 baseline with MSTS.

4.1.1 ABI Runtime Environment Architecture

4.1.1.1 Setup Receiver Control Output Monitoring

The MSTS Communications process will send receiver output to AA via a socket interface. The
Local Area Network (LAN) interface software is already available in the AA Comms CSCI to
leverage for this functionality in ABI.

4.1.1.2 Solaris 2.5.1

The CIS 1.2 platform is a Solaris 2.5.1 compilation of AA code currently performed on a Sparc 20 or
better machine using Triteal CDE.

4.1.2 MSTS Under the CIS Umbrella

The processes described in Sections 4.1.2.1 through 4.1.2.4 are handled by CIS/AA.

ABI-U-NA-N-003
6 March 1998

4-2

4.1.2.1 Initialization/Startup

4.1.2.1.1 Initialization

• The normal AA background processes will be started at boot.

• The MSTS /abi/runtime/bin/iop process which configures shared memory and the Quad Z or
generic MATT radio receiver and GPS should be started at boot or via the sys_exec.

• The auto_purge processes will be disabled from the sys_exec. Track removal will be done
through MSTS.

4.1.2.1.2. Startup

The MSTS display process and the AA process that controls the interface to MSTS will be started
upon operator selection of the ABI icon.

4.1.2.2 Login/Security

Login is disabled.

4.1.2.3 Auto-Upload of Snapshot DataBase

ABI Database Transfer Procedures have been developed to transfer data from a CIS/AA ground
station and copy the files onto an ABI system. This procedure will also work from one ABI System
to another ABI. This includes transfer of an Integrated Database (IDB) and/or Near-Real Time (NRT)
database.

4.1.2.4 GPS System Time synch (AMC Only)

A modification of the system time should not cause any interruption of AA processing. However,
Time of Receipt (TOR) for contacts created prior to the GPS sync may not reflect the true time of
creation. If any time discrepancies occur during track creation, the AA autopurge daemon may
prematurely delete tracks which are not as old as they appear to be. This problem may be remedied by
either synchronizing time prior to running in messages or the operator may disable the autopurge
capability.

The design approach for system time synchronization will be that the AA Autopurge function will be
disabled and that the system clock will be set via MSTS to the initialization time of the system.

4.1.2.5 Error Handling

Error handling will not be changed from CIS/AA.

ABI-U-NA-N-003
6 March 1998

4-3

4.2 Performance Track Processor Cache Functional Area Design

The Track Processor will be modified to retain pertinent facility data in memory. When facility data is
needed by the Track Processor, memory will be accessed rather than accessing the Facility database.

4.2.1 Performance Track Processor Cache Architecture

The Performance Track Processor Cache (PERF-TP CACHE) process will read all required facility
data and store it in ordered lists in memory at startup.

4.2.2 PERF-TP CACHE Processing Description

The following sections describe the PERF-TP CACHE processing. This description is broken down
into a section on data flow, initialization, inter-process communications, and error handling.

4.2.2.1 Data Flow

The XIDB tables and fields required to perform facility association will be read by the Track
Processor. If caching is turned on, the Track Processor will read all the required fields from the
facility tables (XIDBF, XIDBFQL, and MIDBFQL_ELNOT) from either the real or exercise IDB.
The Track Processor will also read all Template and Template Equip records from the Near Real
Time Support (nrt_support) Database. These records will be placed in ordered lists. The lists will be
ordered on either the primary key for the table which uniquely identifies the record or a secondary key
used for fast access. When the Track Processor requires a particular record or set of records, either a
database query will be performed using the object library, or if caching is turned on, the appropriate
cache get function will be invoked.

4.2.2.2 Initialization

The Track Processor, based on a command line argument of “-cache on”, will read all required
facility data and store it in ordered lists in memory at startup.

4.2.2.3 Inter-process Communications

No new IPC mechanisms are required to support this functional area.

4.2.2.4 Error Handling

All encountered errors are printed to STDERR which is directed to a log file. Depending on the
gravity of the error, the Track Processor may terminate after logging the error.

ABI-U-NA-N-003
6 March 1998

4-4

4.3 User Interface Functional Area Design

The starting point for the ABI User Interface (UIF) functional area is the Window Manager currently
used for TBMCS/CCS (CIS Core Software). The CDE/Triteal is the Window Manager for CCS and
is the basis for further user interface development for ABI.

4.3.1 User Interface Architecture

The current User Interface for CIS under CDE/Triteal is the Application Manager window. This
window consists of folders that the operator can open to gain access to system foreground software
components. In order to provide access to ABI, an icon (Start ABI) will be added to the CCS window
management structure. The Start ABI icon provides the one-button mechanism for bringing up the
MSTS windows.

3D displays/maps will be integrated into the ABI system (MSTS).

ABI Database Transfer Procedures have been developed to transfer data from a CIS/AA ground
station and copy the files onto an ABI system. This procedure will also work from an ABI System to
another ABI. This includes an Integrated Database (IDB) and Near-Real Time (NRT) data base.

4.3.2 UIF Functional Area Processing Description

The following paragraphs describe the UIF processing. This description is divided into a description
of data flow, initialization, inter-process communications, and error handling.

4.3.2.1 Data Flow

In order to understand the User Interface flow, it must be understood that the ABI system will
function most efficiently with initial IDB and NRT databases loaded. These databases will be
obtained from any ground CIS/AA system or a ground ABI system. Once an ABI system has had the
databases loaded, it will be up to the user to reload new IDB and NRT data on future restarts.

ABI-U-NA-N-003
6 March 1998

4-5

NOTE

Loading of the databases is optional, the system can function without these but only the current
information being received by the system will be available.

When the IDB and NRT loads have been completed, ABI will begin by starting the process that
controls the AA to MSTS data flow (e.g., ABI Display Communicator) and the MSTS process. Then,
the classic MSTS displays will appear, covering the CDE “control panel.” When MSTS is exited, the
CDE panel will again be visible, along with the open ABI folder that was there when START_ABI
was executed.

The following is an outline of the steps the user must follow in order to start the ABI system.

CIS/AA only - Select “On” position on power switch.

Loading IDB and NRT data - Extract IDB and NRT databases from a ground CIS/AA
workstation then load onto ABI System. NRT data should be loaded first because the system
will require a reboot. If the IDB is loaded and the system subsequently rebooted, the IDB data
will reflect old, outdated information. A 3.5” floppy disk in UNIX format containing the ABI
load/extract scripts, and a writeable DAT tape are required. These are classified items will be
maintained IAW approved classified material handling procedures established by Government
users.

ABI - The ABI program is initiated by selecting the ABI icon.

4.3.2.2 Initialization

The sys_exec modules sysMain.c and sysSignal.c will be modified to include new signals
to the sys_exec process for stopping all background processes and restarting them. The new
signals are SIGTSTP and SIGCONT which map to the functions sig_stop_fun and
sig_continue_fun, respectively.

A new mechanism for signaling the start_abi_exec background processes will be introduced to
determine if a process is currently running. The “signal” is an OM publish event. The
start_abi_exec subscribes to events of a new “dummy” table in the aa_support database
(table definition: StartAbi.def). When a user double clicks the Start_ABI icon, the
start_abi_client process issues a publish event for the Start_ABI dummy table. The
background process start_abi_exec receives notification of this and starts the start_abi
process. The start_abi process then makes root-user privileged calls to determine if the
abi_data_exchange and MSTS process are already running and only starts them if they are not.
This ensures only one abi_data_exchange and one MSTS process will be running at any one
time. Since the commands are privileged, the start_abi_exec background process will be
needed and started by the sys_exec process and hence inherit the root-user id. In turn, the

ABI-U-NA-N-003
6 March 1998

4-6

start_abi process will then also inherit root-user privileges when started by the
start_abi_exec.

4.3.2.3 Inter-process Communications

Existing CDE/Triteal Window Manager Inter-process communications will be retained. Two new
signals will be added as described in section 4.3.2.2. These signals will be used by Start_ABI to
request a stop and restart to sys_exec of the background processes.

4.3.2.4 Error Handling

Error handling will include the normal methods of fprintf to stderr as well as a pop-up
information window to the user when necessary. If an error occurs the user is notified, and given the
opportunity to continue ABI. For example, if the tar program does not exist so that the user cannot
“un-tar” the NRT files on tape, the user may wish to continue by using the NRT data that exists
already on disk.

4.3.3 UIF Functional Area Changes

The following sections describe the items that are changed in order to meet the requirements of this
functional area.

4.3.3.1 New Software Libraries

New libraries will consist of new icon bitmap files, as well as a new binary repository for ABI-
specific executables. The new module that will control the starting of ABI will be start_abi.c.
The new script idb_load will read IDB extract files from tape and copy them to the
/usr/IDBextract directory on disk so that these files may be read by the DD Controller which
will be subsequently forked by the idb_load script upon completion of the tape read.

The new script nrtload will be used on a CIS host to obtain a tape archive of NRT data which may
then be auto-uploaded on an ABI host upon selection of the Start ABI icon.

4.3.3.2 Modified Software Libraries

The libraries that will be modified are the Window Manager configuration files.

4.3.3.3 New User Interface Windows

ABI/CIS will already be running on top of the Window Manager (CDE/Triteal), which runs on top of
Motif/X, which runs on the hardware (Creator/3D). The CIS Man Machine Interface (MMI) will
provide another Application_Manager icon called Start_ABI. Originally, the Application_Manager
was to be used for the location of the two new icons, Start ABI and IDB Load. However, the
Application Manager could not be modified, therefore the Start_ABI button will be moved to the AA

ABI-U-NA-N-003
6 March 1998

4-7

Window of the INTEL_Applications folder accessed via the Application Manager window. The icons
can then be dragged onto the desktop where they will remain.

4.3.3.4 Modified User Interface Windows

The AA Window includes an ABI startup icon.

The MSTS Executive Window may be modified to provide a drill-down button to return to the
CIS/AA screen, although this is also accomplished by exiting the MSTS. To provide all of the icons
the files listed in Table 4.3.3.4-1, New and Modified CIS Desktop Files, were changed or added:

Table 4.3.3.4-1 New and Modified CIS Desktop Files

New Changed

/usr/l/conf/aa_client/dt/appconfig/icons/C/
StartAbi.m.pm
/usr/l/conf/aa_client/dt/appconfig/icons/C/
StartAbi.t.pm
medium and small icons for Start Abi

/usr/l/share/tip_menus/menus/menu.config Add the
two new icons to the AA window menu.

/usr/l/conf/aa_client/dt/appconfig/icons/C/
Idb_load.m.pm
/usr/l/conf/aa_client/dt/appconfig/icons/C/
Idb_load.t.pm
medium and small icons for IDB Load

/usr/l/conf/aa_client/binaries.doc
List idb_load and start_abi as client icons

aa_client/solaris/bin/idb_load
Invoked by the icon to tar the idb from
tape and invoke the DD Controller process

/usr/l/conf/aa_client/dt/appconfig/types/C/aa_client.dt
Add the parameters of the two new icons and
executables

4.4 Data Base-AA/MSTS Interface Functional Area Design

4.4.1 Data Base-AA/MSTS Architecture

Figure 4.4.1-1, Database (DTB)-AA/MSTS Interface, is a high-level data flow diagram depicting the
DTB-AA/MSTS Interface. ABI will receive data transmissions from a receiver, parse the messages in
message processing and send the parsed messages to the AA Correlator. The AA Correlator will then
correlate the messages and send the results to the database and to shared memory. The Track
Processor and TTA processes will provide further correlation and write to the database and shared
memory. AA display processes and autopurge (if not disabled) will update the database, and the
database will send update notifications to the correlation processes. Data written by AA to shared
memory will be read by MSTS and then used to update the MSTS displays. MSTS will also send
delete requests to AA via API calls. MSTS will call an API that will utilize an ipc call to perform the
delete function. A new process that will handle all the add and update notifications from the database

ABI-U-NA-N-003
6 March 1998

4-8

will invoke the API calls. This method has the disadvantage of additional ipc calls needed for
database notfication, but has the advantage of only one process writing to shared memory. As a
further means of streamlining, the interface will only send data to MSTS that has changed as opposed
to sending the entire data record. This will reduce the amount of data sent to shared memory since
many updates only entail a change to one or two fields out of the dozens of fields in a record.

 AA/MSTS Interface

 ABI Data Fusion Engine ABI Displays (MSTS)

Figure 4.4.1-1 DTB-AA/MSTS Interface

4.4.2 DTB-AA/MSTS Interface Processing Description

The following paragraphs describe the DTB-AA/MTS Interface processing. This description is
divided into a description of data flow, initialization, inter-process communications, and error
handling.

4.4.2.1 Data Flow

Contact data is parsed from a receiver and sent to the correlator process. The correlator process
creates and updates contacts, groups and tracks and sends the data to the database. The TIBS/TADIL
Associator (TTA) provides correlation for air tracks and the Track Processor provides further
correlation; both of which also send data to the database. User-edited contacts are sent to the

Receiver

Message
Processing

Shared Memory

Autopurge
(disabled)

Database

Displays

Correlator

Track
Processor

TTA

API Displays

AA
Deletes

ABI Data
Exchange

ABI-U-NA-N-003
6 March 1998

4-9

correlator for recorrelation and are then sent to the database. Delete requests are specified by the user
or generated by autopurge (if and when enabled - however it is recommended autopurge be disabled
for ABI and sent to the database. All data sent to MSTS will be through API calls. Data sent to MSTS
will be retrieved, processed, and displayed by MSTS processes. MSTS sends delete requests to AA
using an API call. AA will delete the data from the database and delete notifications will be sent to
the registered processes.

Each new or updated correlated contact, group or track will be converted from an Object Manager
(OM) record type into a data structure that will be written to shared memory. This data structure will
include the field identifier and value for each new or updated field. The ABI Data Exchange will only
write to shared memory the fields that are new to the record or have been updated. In order to
determine which fields are updated, a call will invoke an OM function that returns a status array
indicating which fields have changed. The ABI Data Exchange will determine which fields have
changed; and for each field add the field identifier and field value to a list of structures and maintain a
count of the total number of changed fields.

Once all fields and values are added to the list, the list and count total will be used as arguments in
the API function call. Additional arguments will be the type of record (e.g., Contact, Track, etc.) and
the record id. These functions will write the record to shared memory where MSTS will then retrieve
and process the record. In the case of a delete, only the record type and record id will be specified in
the API call. In addition, a link and unlink call will be used in the API to specify when a contact is
added (linked) or unlinked to a group, and when a group is linked or unlinked to a track. The API
calls will be invoked from a separate process that will handle all of the API calls to MSTS.

4.4.2.2 Initialization

The ABI Data Exchange will be initialized when invoked by the Start_ABI icon and background
process. This process will ensure that the ABI Data Exchange is not already running. If not, it will
start the ABI Data Exchange process which will first read all of the data (contact, tracks, groups, etc.)
in the database and pass the data up to MSTS. It will then register with the Object Manager Broker
for all tables of the NRT database that it wishes to be notified of when a change occurs. Currently
these are the Trackset, Contact, Contact Group and link tables.

4.4.2.3 Inter-Process Communications

All AA/MSTS Interface communication is through shared memory and files. If there are other client
machines, MSTS will handle the dissemination of AA data to the other clients through ipc socket
calls. Shared memory was selected based on the fact that Boeing already uses the shared memory
methodology to transfer data, and also because shared memory is relatively a fast method for data
transfer compared to sockets.

ABI-U-NA-N-003
6 March 1998

4-10

4.4.3 Error Handling

Currently the API functions defined by MSTS return type void so there is no indication if the
function succeeded. Error handling will be added to check that conversion from an OM record to the
API data structure was done successfully.

4.4.4 DTB-AA/MSTS Interface Functional Area Changes

The following sections describe the items that are changed in order to meet the requirements of this
functional area.

4.4.4.1 New Software Libraries

The two libraries listed below will be created to support this functional area.

• MSTS to AA library (libabiexchange.a) - This library will process delete requests received
from MSTS. The library may eventually be expanded in the future to include additional requests
such as data additions or updates.

• MSTS API library (libabi.so.1) - This library contains functions utilized by AA to send data to
MSTS; functions included are ones to add, update, delete and link data.

4.4.4.2 Modified Software Libraries

The libraries that will be modified are the Window Manager configuration files.

4.4.4.3 New User Interface Windows

No new user interface windows will be developed under this version of ABI.

4.4.4.4 Modified User Interface Windows

The Correlator disk library (libdsk.a) will be modified to include the addition of routines to convert
OM records to MSTS API structures needed in the API calls.

4.5 Database - Integrated Data Base Snapshot Functional Area Design

The Database (DB) Integrated Database (IDB) Snapshot functionality will provide a streamlined
approach in the transfer of IDB (facility) data from a CIS IDB maintained as a SYBASE database to
an ABI IDB SYBASE database. This functionality will also optimize the access of the IDB data by

ABI-U-NA-N-003
6 March 1998

4-11

AA to help meet performance requirements. This performance related enhancement is accomplished
by code modifications to the track processor.

4.5.1 IDB Snapshot Architecture

The IDB Snapshot functional area software consists of the following components:

• IDB Load script

• System Startup Configuration File

4.5.2 DB-IDB Snapshot Processing Description

The following paragraphs describe the DB-IDB Snapshot processing. This description is divided into
data flow, initialization, inter-process communications, and error handling.

4.5.2.1 Data Flow

The input data source for this functional area is the CIS SYBASE IDB and the output data destination
is the ABI SYBASE IDB.

The DB-IDB Snapshot functional area software consists of the new script, idb_load, a modification
to the system startup file, sysConfig.dat, and code modifications to the Track Processor application.
The following paragraphs provide implementation details.

• IDB Load script - A new c-shell script, idb_load, reads a UNIX tar tape. This tape contains
IDB extract information and is created on a CIS machine which contains a populated IDB
for the area of interest. The new script will place the IDB extract files in a temporary hold
directory, /usr/IDBextract.

• System Startup Configuration File - The system startup configuration file
($BTG_SYSTEM/solaris/config/sysConfig.dat) used by sys_exec will be modified to
include the “-cache on” option during the startup of the track processor.

• Track Processor - The Track Processor associates NRT (tracks and contact groups) data to
IDB (facilities and facility equipment) data. It will be modified to run with an optional
caching (“-cache on”) argument which will cause all pertinent IDB data (i.e., the requisite
tables and subset of their fields) to be read along with the complete set of Template data
from the NRT Support database. Subsequent queries of this data will merely require
memory accesses instead of database accesses thereby increasing processing speed of this
application and optimizing the access of IDB data.

ABI-U-NA-N-003
6 March 1998

4-12

4.5.2.2 Initialization

An initialization process is not required for this functional area.

4.5.2.3 Inter-Process Communications

The existing ipc mechanisms were retained.

4.5.3 Error Handling

The existing error handling methodology was retained.

4.5.4 Functional Area Changes

The following sections describe the changes that will be made to the system libraries and/or interface
windows.

4.5.4.1 New Software Libraries

No new software libraries were created.

4.5.4.2 Modified Software Libraries

No new software libraries were created.

4.5.4.3 New User Interface Windows

The IDB Controller window was created for this functional area.

4.5.4.4 Modified User Interface Windows

No user interface windows were modified.

4.6 Message Design

4.6.1 Message Functional Area Architecture

ABI Architecture

RADIO and GPS MSTS(ABI Displays)

Receiver Q
IOP

Control
(IOP Process)

ABI-U-NA-N-003
6 March 1998

4-13

 ABI Data Fusion Engine

Figure 4.6.1-1 ABI Architecture

Figure 4.6.1-1, ABI Architecture, shows the part of the ABI system that the Message functional area
operates under.

The AA Comms Config software must be configured and the lines enabled for the input that will be
received from the INTEL Radio receiver via the Input/Output Processor (IOP) operation. As shown in
Figure 4.6.1-1, the IOP function is controlled by the MSTS (ABI Displays) software and it controls
the input lines directly from the radio and the GPS receiver.

The message process will receive data from the Intel Radio, including TDDS, TOPS, and TIBS
messages. The message process will parse each message into a new contact and send the contact to
the correlator which correlates the contact and sends the correlated data to shared memory. This is
actually accomplished via Object Manager Broker notification to a new process (ABI Data Exchange)
which then calls API functions that access shared memory.

4.6.1.1 Data Flow

The QuadZ (AMC Only) input lines are controlled by the IOP and Comms Config processes. The
IOP controls what is received from the radio, and the Comms Config controls what the ABI Data
Fusion Engine receives. The ABI Data Fusion Engine will receive data from the receiver on a LAN

Message
Processing

Comms

Database

Displays

Correlator

Track
Processor

Shared Memory

Receiver G

ABI Data
Exchange

ABI-U-NA-N-003
6 March 1998

4-14

line, including TDDS, TOPS, TIBS and TADIL-A messages. The message process will parse each
message into a new contact and send the contact to the correlator which correlates the contact and
updates the database. The ABI Data Exchange process is then notified of the update and sends the
correlated data to shared memory.

The functionality to process TDDS, TOPS, TIBS and TADIL data messages over a LAN already
exists in the AA software but must be verified with the new interface to the QUADZ receiver and
MDS controller software. Test plans and procedures will be written to verify that the messages are
correctly received and correlated.

The GPS messages (AMC Only) will be received according to the NIMA 183 - 2.0 standard. An
“own-ship-id” will be used to uniquely identify each message for Correlator processing to uniquely
identify our “ownship” platform.

4.6.1.2 Initialization

The IOP process will be started by the sys_exec procedure before all the processes except for the IPC
process.

4.6.1.3 Inter-process Communications

All QuadZ communications will be sent over the LAN.

4.6.1.4 Error Handling

No error handling processes are required for this functional area.

4.6.2 MSG Functional Area Changes

The following sections describe the items that are changed in order to meet the requirements of this
functional area.

4.6.2.1 New Software Libraries

No new software libraries were developed.

4.6.2.2 Modified Software Libraries

No software libraries were modified.

ABI-U-NA-N-003
6 March 1998

4-15

4.6.2.3 New User Interface Windows

No new user interface windows were developed.

4.6.2.4 Modified User Interface Windows

The Comms Config window will be modified to include setting up an Input line as a TCP/IP Client.
“Client” was added to the “Input Device” pull-down of the Configuration sub-menu window.
Previously all input lines were automatically set as server lines. The Integrated Communications
Processing (IOP) however is the server in this architecture, hence the need for the change.

4.7 Integrated Communications Processing Functional Area Design

The Integrated Communications Processing is the first ABI process to start. It creates the shared
memory segment, initializes portions of the segment, starts client or server software (described
below), and sets up TCP/IP communications ports representing the data streams from the various
external data sources (GPS, TRAP, TIBS, TADIL-A). It then waits for either interaction with the ABI
control software (connecting to the data sources) or the ABI correlation engine (desiring the data).
The IOP program reads data from the various external data sources, does limited processing, and
relays the data to the correlation engine. As it reads and writes, the IOP program computes interface
health (when last seen, how much) for operator viewing.

4.7.1 Integrated Communications Processing Architecture

The Integrated Communications Processing program consists of a main routine, initialization
routines, special processing routines (GPS, TIBS), and access to the standard ABI control routines.
Processing consists of initialization calls and a “Do forever” loop that does a sleeping poll for I/O
activity. The "sleeping" portion allows the process be awaken every sleep interval (about 100
milliseconds) for timely processing or whenever data is present. On awaking from the sleeping poll,
IOP processes any I/O needs, and then does "timely" processing such as interface health or GPS DR.
The “Do” loop then continues a sleeping poll again.

4.7.2 IOP Processing Description

The IOP initializes the shared memory segment, loading the IDB and TRAP system definitions
The preference file is accessed and the type of service desired is determined
If a server:

Clear trigger files and verify that the disk setup for ABI is of the form /abi/disk1-n

ABI-U-NA-N-003
6 March 1998

4-16

Launch whatever programs are needed (data svc) and define access ports for data service ports
6027-6032.

Do forever:
Poll the current I/O connection (sockets and ports)
Returns from poll with either n I/O events or times out.
Check for signals (sig term, sig poll) and perform the associated service

If poll returns no I/O events (time out):
Check each connection
Report link time acts for data sources without data for n minutes or inject data to send
a data sink (a user) else have n I/O events.

For each user:
If a read I/O event for this fd-
If a service events - do sout accept and add to user set as a data sink (user)
Else if GPS or a data source - read in n bytes - send y data to data sinks associated with serial
Else a write I/O event - write n bytes

End for each user:
Periodically check for new/changed I/O connections
Compute line thru-put
Check for IDB update and injected data files

4.8 Integrated Visual Control (MSTS) Functional Area Design

The visualization process is controlled by a "banner" program that is started when the operator selects
ABI visualization. This process reads user customized values and starts up the default visualization
programs. If the operator desires to change the layout of the visualization screens, the operator can
either attempt to grab the edge of the screen they desire to change, or go through the MSTS banner
program which allows the operator to define screen layouts in one of six ways and get a particular
layout by pressing one screen button. The MSTS program will be the central point to have other
control and configuration programs started for operator interaction. The programs are listed by
function under five pull down functional areas (Setup, Display, Threats, Draw, and Utilities). Special
buttons will be presented in the MSTS banner for fast, single click operations to get a screen
snapshot, define a map centering point, get GPS parameter readout, or to freeze the GPS time and
location readout for logging.

4.8.1 Integrated Visual Control (MSTS) Architecture

MSTS consists of a main routine which initializes the user information, builds a banner window of
pull down menus and push buttons, starts various other visualization and control programs, adds a
one second timer call function to the X window functionality, and then calls the XtMainLoop()
function which hands processing over to the X server. As timers decrease to 0 or buttons are pressed,
or selections made, various routines within the collection of software making up MSTS (called X

ABI-U-NA-N-003
6 March 1998

4-17

callbacks) are called by X to process each event. The routine performs some simple tasks (such as the
GPS data pop up), starts a program (radio control, filter control, expert functions), or sends
commands to visualization programs to change their format when the operator presses a screen layout
button. The timer function updates the time and GPS derived position information displayed. Most
functions return to X to allow for other event processing. The System shutdown and Quit functions
are two events that do not return to X.

4.8.2 Integrated Visual Control (MSTS) Processing Description

Startup X services
If a server:

Start del-logs to check for files to delete
Check to ensure IOP is running
If a server:

Delete trigger files
Launch appropriate radio control program
Start any local correlators (TIBS, TADIL A, TADIL J)

Else a chart:
Run rdate to get date and time from server
Define MSTS window features
Realize the main widget
Start the WDBMAP program
Setup two X timer events

Call Timer callback each second
Call Delay callback after 3 seconds

Continue in the X Mainloop
When Delay callback timer expires:

Start up appropriate radio control dialogue
When Time callback timer expires:

Check for new trap filters (drawn)
Call the appropriate filter program to complete and send to radio
Check and display any test messages; or program calls from IOP
Set correct button sensitivity
Update the random display (GPS)
Check for dead children
Check for react of imagery
Move any dynamic Bullseyes
Handle any command files
Check for Flight Route file changes
Update (DR) each active flight route
If moving alert filter defined:

Set appropriate altitude flag
Check each active track

ABI-U-NA-N-003
6 March 1998

4-18

Set bltnk if necessary
Compute an alert if too close to a kill ring

4.9 Country Outline Visual (WDBMAP) Functional Area Design

When MSTS starts up, it launches the WDBMAP program to visualize where the system is and get a
simple situation awareness and visualization layout tool. The WDBMAP program then displays
country outlines, rivers, lakes, and internal borders along with user selected AOI lines, route lines,
and symbols representing the threats in the shared memory segment database that have been
processed by the correlation engine. The WDBMAP program allows the operator to scale all of these
features using a variable zoom feature as well as display the extent of the maps, charts, imagery, and
DTED over the world outline. The WDBMAP program initially centers the map approximately in the
GPS reported position and allows the user to re-center the map based on another defined ground
point, a simulated flight, or the map centering flag. The WDBMAP program is also used to display
the location and viewing direction of the 3D flying visualization program’s point of view as well as
satellite ground tracks from orbit visualization.

4.9.1 Country Outline Visual (WDBMAP) Architecture

The WDBMAP program consists of a main routine which initializes X and the data structures needed
by WDBMAP and a series of X subroutines called “callbacks”. Each callback has an implied X event
such as pushing a button or selecting a value. When the X event occurs, the XX mainloop function
serializes that event with all other events and calls the appropriate callback routine in the order of the
event serialization. Each callback routine is responsible for processing or a passing on its event.

4.9.2 Country Outline Visual (WDBMAP) Processing Description

Access shared memory.
Define the window parameters; context, GC, main-widget, default color map
Load the Generic symbol definites.
Load the previous zoom factor configuration
Assume all map types have coverage
Initialize the orbit database
Setup a X timer to cal Timer callback in 3 seconds
Continue in the X Mainloop

When Timer Callback timer expires:
Complete if time to re-draw of map
Compute new re-center location
Draw moving tracks
Check Display data (Draws, other area actions)
If time to re-draw all

Call Re-draw All
Else:

ABI-U-NA-N-003
6 March 1998

4-19

Draw Update
Poll any Route updates/changes

Start a new times event to call Timer Callback in 1 second

4.10 ADRG Chart Visual (ADRGDSP) Functional Area Design

This program performs like the WDBMAP program in performing a centered, localized view of the
geography of the area while being annotated by AOIs, routes, and threat symbols. The display
background for the ADRGDSP program consists of colored navigation charts that have been digitized
by DMA (now NIMA) and published in CD-ROM form. The charts come in different families,
according to usage. The families used by ABI are:

• Global Navigation Charts (GNC) scaled 1:1,000,000

• Joint Navigation Charts (JNC) scaled 1:500,000

• Operation Navigation Charts (ONC) scaled 1:250,000

• Theater Pilotage Charts (TPC) scaled 1:100,000

• Topographic Line Maps (TLM) scaled 1:50,000

The files on a CD-ROM represent a full scale rendition of the original paper charts as well as a 1/16
scale version for quick overview. The CD-ROM files are copied to the ABI disk as well as a new file
generated to show the area at 1/4 scale. These three versions make up the fill scale, mid resolution,
and overview charts of an area for a particular chart family.

4.10.1 ADRG Chart Visual (ADRGDSP) Architecture

Like the WDBMAP program, the ADRGDSP program represents a geographic visualization for
ABI. It consists of a main routine that performs initialization, database routines that handle the data
for the background, a periodic poll timer, a re-draw function, and access to a common drawing
package for AOI, route, bullseye, and threat drawing in most visualization environments. As the poll
timer event occurs, the ADRGDSP timer routine is called, which determines if the screen is to be
redrawn completely (map zoomed, re-centered) or just updated. The appropriate functions are then
called to re-draw or update the display, and the ADRGDSP program waits for the next timer event.

4.10.2 ADRG Chart Visual (ADRGDSP) Processing Description

Access shared memory

ABI-U-NA-N-003
6 March 1998

4-20

Define the window parameters: maid widget, GL, default, color map, resources
Create display window
Load the generic symbols
Set X timer
 X mainloop
When Timer callback time expires:
 Compute if time to redraw
 Compute centering loc.
 Draw map tracks
 Redraw (if time)
Else
 Draw update
 Pole any route update/change
Start a new timer event to call Timer callback

4.11 Imagery Visual (EOSATDSP) Functional Area Design

This program performs like the WDBMAP program in performing a centered, localized view of the
geography of the area while being annotated by AOIs, routes, and threat symbols. The display
background for the EOSATDSP program consists of imagery files that have been geo-registered and
processed by other ABI software into tiles and condensed like ADRG charts. The imagery is either
black & white imagery from a high resolution satellite (like the French SPOT satellite) or false color
multi spectral displays from broad area imagery satellites like EOSAT.

4.11.1 Imagery Visual (EOSATDSP) Architecture

Like the WDBMAP program, the EOSATDSP program represents a geographic visualization for
ABI. It consists of a main routine that performs initialization, database routines that handle the data
for the background , a periodic poll timer, a re-draw function, and access to a common drawing
package for AOI, route, bullseye, and threat drawing in most visualization environments. As the poll
timer event occurs, the EOSATDSP timer routine is called, which determines if the screen is to be
redrawn completely (map zoomed, re-centered) or just updated. The appropriate functions are then
called to re-draw or update the display, and the EOSATDSP program waits for the next timer event.

4.11.2 Imagery Visual (EOSATDSP) Processing Description

Access shared memory
 Define window parameters: main widget, color map, GL, res.
 Create display window
 Load generic symbols

ABI-U-NA-N-003
6 March 1998

4-21

 Find applicable image
 Setup X mainloop
When Timer expires:
 Compute if time to redraw
 Compute centering loc.
 Draw map tracks
 Redraw (if time)
Else:
 Draw update
 Poll any update changes
Set a new Timer event

4.12 3D Flying Visual (FLY) Functional Area Design

The ABI system allows the operator to ‘fly’ in an area where the ABI system has elevation data called
DTED as well as ADRG charts or imagery. With these two data sources (DTED and a 2D
geographic representation), a 3D visualization can be computed and viewed. Due to the speed and
capabilities of modern graphics systems such as SUN's Creator 3D graphics workstations, these 3D
visualizations can be shown in near real time and at speeds comparable to Air Force transport
aircraft. This visualization gives the user the sense of looking out of the cockpit window at locations
the user has never been to before, with the capability to pan 360 degrees as well as change the
viewing altitude and viewing inclination angle.

4.12.1 3D Flying Visual (FLY) Architecture

The FLY program consists of a collection of routines, written in OPENGL that perform functions
similar to other 2D visualization programs. There is a main routine which performs initialization and
display setup; defines the various event routines to be called in its WIN_INIT () function Call, and
the calls an external, windows oriented, mainloop and event processing function. As events occur,
the mainloop function calls the various even processing functions defined during initialization to
perform keyboard actions, resize actions, mouse actions, button actions, and drawing actions.

4.12.2 3D Flying Visual (FLY) Processing Description

Call Win_Configure () to define the window in a motif environment
Open the DTED database
Load all Flyable routes
Load a coverage definition of the ADRG and EOSAT (MST) databases

ABI-U-NA-N-003
6 March 1998

4-22

Call WIN_INIT () to define the functions to be called for various window events and define a
window visual

Call WIN_GetSize () to acquire the startup window sizes so the appropriate 3D view can be
computed

Define the OPENGL perspective, initial aircraft position, threat position and AOI position

Call the windows mainloop function to process all future window events

4.13 Satellite Orbit Visualization (OV) Functional Area Design

The ABI system supports not only visualization of where the operator is geographically but also
presents an outer space view of the planet and the estimated location and viewing areas of defined
satellites. This situation awareness can then go toward the ability to see communications satellites
and have a well populated constellation of GPS satellites for geographic positioning, or the ability of
an intelligence satellite to see a desired portion of the earth. The world is then displayed as a
rotatable ball with curves representing the path of satellites of interest and line of site cones projected
to the earth’s surface from the satellite’s computed position for limited sight satellites. In addition,
ground tracks can be computed and displayed on the WDBMAP visual and timelines can be
computed to show when various satellites can see a ground spot.

4.13.1 Satellite Orbit Visualization (OV) Architecture

Like the FLY program, OV presents a 3D view using OPENGL. There is a main routine which
performs initialization calls and display setup logic. The window texture map is read and stored. An
OPENGL call is made to acquire the active texture map size supported by the host computer. If it is
too small (X by X texture map compared to height and width of texture file loaded), the OV program
aborts. Otherwise, it calls the mainloop window function (XXapp Mainloop).

4.13.2 Satellite Orbit Visualization (OV) Processing Description

Call WIN- Configure (to define the window in a motif environment
Call WIN-Init () to define the function to call for various window events and to define a window
visual
Call WIN-Get Sje () to acquire the startup window sizes so that the appropriate 3D view can be
computed.
Define the OPENGL perspective, colors, fonts, and texture map.
Call the window mainloop function to process all future window events.

ABI-U-NA-N-003
6 March 1998

4-23

4.14 Radio Control (ZEBRA) Functional Area Design

With the development of Mnemonics’ ZEBRA radio, an integrated solution to radio control,
cryptographic control, and link processing has been developed for ABI. The radio control function
supports simple radio tuning, geographic filter definition and control, and simplified testing. This is
one of several radio control methods within ABI. See 4.24 (MATT Radio) for another method.

4.14.1 Radio Control (ZEBRA) Architecture

The ZEBRA process is a partially integrated radio controller for the QUADZEBRA radio. It assumes
full and complete initialization and command of the radio, with simple trigger files created to tell
external processes of change in the radio configuration or control. All trigger files are created in the
/tmp area and denote such events as: “Ready to connect for TRAP”, “New TRAP filter(s) Installed”,
etc.

4.14.2 Radio Control (ZEBRA) Processing Description

Initialize the X environment
Initialize (connect to) the radio
Determine which form of functional is to be initially displayed
Access the command pipe for future command
Create the initial window
Create an X timer to evaluate events every second
If should hide:

Make window invisible
Call XX Mainloop () to process all future events.

4.15 Symbol Control (SYMFILTER) Functional Area Design

Every correlated track defined by the correlation engine has a symbol assigned to it. The symbol
graphically identifies the type of radar or object and identifies it (friend, foe, commercial, neutral).
These symbol definitions are displayed in each graphical visualization process described and
presented by the SYMFILTER program. In the SYMFILTER program, the operator has the
opportunity to select those symbols that the operator wants to see. Additional control features include
a visualization of the estimated ring of detection (‘see me’ ring) and/or the lethal capability range of
the track (‘kill me’ ring) is desired. The operator can also request that new tracks of specific types be
display using an alert (blink) visual when they are reported out of the correlator. These basic symbol
controls allow the operator to determine how and what will on the ABI display. The format of the
symbols can also change by using the PREFERENCE program described below.

ABI-U-NA-N-003
6 March 1998

4-24

4.15.1 Symbol Control (SYMFILTER) Architecture

All symbols are initially assumed to be desired when the ABI system starts because we assume that
the ABI system will move from aircraft to aircraft and one flight crew to another. This is the current
filter settings. The SYMFILTER program will read the recorded filter settings when first selected
(under Setup->Filters->Symbols). Operator selections then modify both the recorded filter settings
and the current filter settings.

The process consists of a main routine that builds a symbol button display as well as a speed button
lower panel. The program then calls XtMainLoop() to turn over event processing to X. When a
button is pressed, the X event processing calls the registered callback function to perform the implied
action. Typical actions cause symbols to be selected or deselected. The OK button performs the
writing of new recorded and current filter settings as well as unmanaging the display window (the
program is still running). Successive selection of the Setup->Filters->Symbols operation will
revisualize the window with the settings as the operator left them. The Cancel button action
unmanages the window only. The Rings button will present a Threat Rings version of the symbol
window with just those symbols identified as "Systems" with their implied detection and threat rings
defined in a systems file. Button operations are the same in the Symbol Filter display, except that
Cancel and OK cause a return to the Symbol Filter display.

4.15.2 Symbol Control (SYMFILTER) Processing Description

Access Shared Memory
Initialize display parameters: Main-widget, default resources
Check for ring filter, symbol filter, or IDB filter option choice
Get stored values
Build appropriate filter display
XX Mainloop
Callbacks:

OK- flag symbols for display
 - flag symbols for alerts
 - flag rings for display
 - close window
Cancel
 - Close window
Help
 - Displays help window

4.16 Area of Interest (AOI) Definition/Control AOI Functional Area Design

There are three basic forms of scalable annotation available in ABI: Areas of Interest (AOIs),
Bullseyes, and Routes. AOIs are defined as either circles of a user selected radius or a series of line
segments. Both forms require a color selection by the user and do support a simple string annotation

ABI-U-NA-N-003
6 March 1998

4-25

additional feature. The AOI program supports the creation, modification, deletion, and visualization
control. The definitions and visualization control definitions are kept in files and are maintained from
mission to mission.

4.16.1 Area of Interest (AOI) Definition/Control AOI Architecture

The AOI program represents a typical data management function within ABI. The program can be
called by the MSTS program with specific parameters to complete some action (such as drawing a
new AOI) or for general data management. The data management functions include: Edit, Delete,
Make Visible, Make Invisible and Create. A standard list of existing AOIs is presented along with
buttons representing all of these functions. An AOI file needs to be selected for all but the Create
function before a function button is selected. The Create and Edit functions present a special form
with fields for the contents of an existing or entry of a new AOI. The operator selects fields, enters in
the desired values, and presses the OK button. If all of the values pass validity checks, the AOI is
created as a new file and entered into the AOI select list of the original display.

Software organization of this process consists of a main routine that initializes the windowing
structure, parses parameters for special initial processing, and then calls XtMainLoop() for Xevent
processing. Each button has a callback routine that performs the desired action and then either
returns to X(display still active) or closes the window and terminates the program (OK and Cancel).
The AOI program is assumed to be used to edit or create a single AOI. Visibility changes can be
accomplished on multiple AOIs without the program terminating.

4.16.2 Area of Interest (AOI) Definition/Control AOI Processing Description

Access Shared Memory
Initialize display parameters
Check for graphical AOI creation
If not graphical

present AOI dialog box
Else

Allow user to draw
Present AOI dialog box

XT Mainloop
Save Callback checks for valid data, saves

ABI-U-NA-N-003
6 March 1998

4-26

Display AOI
symlink selected AOI
signal AOI update

Remove from Display
unlink AOI
signal update

4.17 Route Definition/Control (ROUTE) Functional Area Design

Like AOIs, routes are managed by a data management program structured specifically for routes.
Like AOI, the ROUTE program has two faces, the file management and visibility control section and
the Create/Edit section where specific parameters making up a route can be entered. Additionally,
routes are ASSUMED to be flown with a takeoff time and estimated speeds and altitudes to fly the
route by. When a route file is first seen by the visualization software, it will be flown if the start time
is in the past.

4.17.1 Route Definition/Control (ROUTE) Architecture

Software organization of this process consists of a main routine that initializes the windowing
structure, parses parameters for special initial processing, and then calls XtMainLoop() for X event
processing. Each button has a callback routine that performs the desired action and then either
returns to X (display still active) or closes the window and terminates the program (OK and Cancel).
The Route program is assumed to be used to edit or create a single Route. Visibility changes can be
accomplished on multiple Routes without the program terminating.

4.17.2 Route Definition/Control (ROUTE) Processing Description

Access Shared Memory
Initialize window parameters, main-widget, resources
Initialize default directory
Check for graphical Route creation
If not graphical:

present Route list
If graphical:

allow user to draw
then present Edit window

XX mainloop

ABI-U-NA-N-003
6 March 1998

4-27

4.18 Preference Selection (PREFERENCE) Functional Area Design

The user preference selections are controlled by two major programs: Pref and wx-pref. The PREF
program handles the drawing control and special events options controllable by the operator. Such
things as live widths, symbol set selection and size, and history depth are set by the PREF program.
The Wx-PREF program controls the special preference valves associated with viewing denied area
weather tracks that are received over TRAP: Such things as which weather values are critical to the
aircraft (temp, wind speed, etc.) are selected by the user for various colorized visualization.

There are two other programs that modify user preferences and are discussed elsewhere. Purge to set
track and contact purge times and symbol filters to set attitude and alert times. There are also many
preferences which do not have MMI support and are used to configure the software. These
preferences are set using a UNI text editor and a knowledge of what each preference controls.

4.18.1 Preference Selection (PREFERENCE) Architecture

Each of these programs consists of a main routine that initializes the X environment, creates graphical
widgets for each preference value to control, populates these widgets with the current preferences
value, and calls XT Mainloop.

If the operator changes a widget value, the widget display is updated but not the corresponding
preference value or file. Only on the operator’s selection of “OK” are the widgets read, matched to
their preference value and stored both in memory and to disk for the next session.

4.18.2 Preference Selection (PREFERENCE) Processing Description

Access shared memory
 Initialize display parameters
 Get stored preferences
 Build display
 XX mainloop
Callbacks
 Set the preference value
 Save values to preference file

ABI-U-NA-N-003
6 March 1998

4-28

4.19 Satellite Selection (SATSELECT) Functional Area Design

The SATSELECT program works with orbit visualization to allow the user to identify satellites of
interest, associate them into groups, and select individual satellites and/or groups for orbit
visualization. SATSELECT also allows the user to select the colors used to display the selected
satellites and their sensors.

4.19.1 Satellite Selection (SATSELECT) Architecture

The SATSELECT program consists of a main routine which initializes and defines the main control
window. The control window displays all the satellites, all the defined groups, the selected satellites,
and buttons to change the selections, group definitions, and OV visualization properties/colors. The
main routine builds the window, loads the existing satellites and group definitions and then calls XX
mainloop to await window events.

4.19.2 Satellite Selection (SATSELECT) Processing Description

Initialize the X interface
Define the main-widget
Load application resources
Ensure we are the only SATSELECT running
If not:

Tell older program to “raise” self
Exit after telling older program

Build the main control window
Load all defined satellites
Load all defined groups
Load the visualization defaults
Load the definition of which satellites are active
Set the control button sensitivity based on what has been loaded
Setup an X timer to check for “raise” events
Call XX Mainloop () to manage the window and process all future X events

ABI-U-NA-N-003
6 March 1998

4-29

4.20 Track and Communications Status (STATUS) Functional Area Design

The STATUS program periodically polls the counts of tracks, contacts and I/O status and displays
those values in three ways - from very simple to very complex. The user is able to select how
detailed the data is presented by selecting “MORE” for more detailed or “LESS” for less detailed.

4.20.1 Track and Communications Status (STATUS) Architecture

Based on the configurations defined in preferences, the STATUS display looks at selected I/O ports
and tables to define what is in the system These simple counts are displayed in a tabular fashion for
periodic or instant viewing of the internal activities within the system. The most advanced tabulation
includes the sizes and current usage of various internal tables. On a periodic basis (currently hard
coded at 5 seconds), the counts of the viewed objects are recomputed and displayed.

4.20.2 Track and Communications Status (STATUS) Processing Description

Access Shared Memory
Determine track source
Initialize Data
Initialize Display Parameters
Build display
Set X Timer
XX Mainloop
When Timer Expires:

Update status displays
Set new timer event

4.22 Archive Management (ARCHIVE) Functional Area Design

The ARCHIVE program gives the user tape archive capabilities to record log files and screen snap
shots.

4.22.1 Archive Management (ARCHIVE) Architecture

The program consists of a main function which defines the file list along with buttons to delete or
archive the selected files. User selection and choice of button determines what will occur. The
operator can delete or archive. When either is selected, the process is performed and the program
terminates.

ABI-U-NA-N-003
6 March 1998

4-30

4.22.2 Archive Management (ARCHIVE) Processing Description

Access shared memory
Initialize display parameters
Create window
XX mainloop
Callbacks

Tar archive files
Delete archive files

4.23 Exercise Input (EXERCISE) Functional Area Design

The EXERCISE program works in concert with the MESSAGE program to allow for scripted
injection of contact reports of interest.

4.23.1 Exercise Input (EXERCISE) Architecture

The EXERCISE program is the script input point for the user, where selected contact report of
predefined locations can be injected into the system. The EXERCISE Program defines the script, and
the MESSAGE program reads the script and injects contacts at the appropriate time.

4.23.2 Exercise Input (EXERCISE) Processing Description

Access Shared Memory
Initialize Display parameters
Create Display of exercise list
XX Mainloop
Callbacks
 Delete
 Delete exercise file
Activate
 Unlink old exercise file
 Link new exercise file
Quit
 Exit window
Help
 Create Help window
Edit Create
 Create display
 If Edit load points

ABI-U-NA-N-003
6 March 1998

4-31

4.24 MATT Radio Functional Area Design

With the introduction of the MATT radio in addition to the QUAD NET and QUAD ZEBRA radios,
a new radio program design was developed. In processing the MATT, there are two programs
responsible for control and tuning: MATT_CTRL and MATT_RADIO. They operate as a
foreground and background pair, sharing data through a separate shared memory segment. The
MATT_CTRL program is the operator interface to the capabilities of the MATT and where specific
functional service is selected. The MATT_RADIO program decodes the functional service request
into one or more MATT commands and records the entire communication interaction with the MATT
radio in a portion of the shared memory segment mentioned above. This allows the operator and
MATT_CTRL to see how the MATT command is working as well as any report output by the MATT
radio. The processing is written in an asynchronous fashion so that either ABI or the MATT can be
powered up first.

4.24.1 MATT Radio Architecture

Both programs are started by MSTS when the Start_ABI button is pressed. MATT_RADIO attempts
to connect to the control (Maintenance) port of the MATT radio and listen to what the MATT has to
say. Each phrase (line) sent by the MATT radio out the maintenance port implies what is happening
or has happened to the radio. The MATT_RADIO program attempts to classify each phrase and
feedback to the user and MATT_CTRL what stage of usability the MATT radio is currently in. As it
takes over six minutes to boot up the MATT radio and over twenty minutes to re-load the FLASH
EPROM software and table definitions, the MATT_RADIO program has lots of time to wait and
analyze. It also can tell the MATT_CTRL program “Not Yet” in terms of attempts to
command/control the radio while the bootup or software load process is being performed.

The include file matt_gbl.h defines fifteen different MATT_STAT values for the various phrases and
conditions that the MATT_RADIO program can detect from the MATT radio chatter. It also defines
the eleven commands (MATT_HL_CMD) that the MATT_CTRL program can request the
MATT_RADIO program to perform.

This status and control information is periodically reviewed by the MATT_CTRL program to enable
or disable the action buttons present on the MATT_CTRL program’s various windows. Long-
winded commands (i.e., “Activate the radio”) are broken into pieces and each piece is sent. The
command results are watched until the MATT_RADIO program says that the command is done, and
then another request is then presented to the MATT_RADIO program.

Of special architecture note are the files and directories in /abi/share/matt:

The file named “services” has a list of the supported link services. It is assumed that there are sub-
directories of the directory “satellites” that mention their services by name and define the selectable
frequency settings in a file called “freq4svc_sat” for each service. This file defines both frequencies
and names of each link to use to find the other tuning parameters for that specific link. As an
example, assume the “services” had an entry for “TRAP”. Inside the satellites directory would be a

ABI-U-NA-N-003
6 March 1998

4-32

sub-directory called “TRAP”. Inside the “TRAP” sub-directory would be a file “freq4svc_sat” with
entries such as:

ATLANTIC=345.678

PACIFIC=452.195

“ATLANTIC” and “PACIFIC” now name specific TRAP links whose complete link parameters
should be found in a file named “.default_ATLANTIC” and “.default_PACIFIC”. This series of files
and directories allows for easy configuration and growth of link and parametric definition.

In addition, the /abi/share/matt directory contains directories for the definition of CI filters (inside ci-
filters), unknown signals filter (unk-sig-filters), TIBS filters (sids-filters), categories of interest filters
(coi-filters) and the control of unknown and category of interest filters on a geo-filter basis (inside
geo-filters.)

4.24.2 MATT Radio Control Processing Description

MATT Radio:
Access MATT Shared Memory, ABI Shared Memory
Get I/O definition of link to use to talk to MATT
Open MATT serial interface with XON/XOFF flow control
Install the MATT Control Connection in the IOP status list
current_action=idle

Do forever
If current_action not previous action:
 Tell user of new MATT status
Poll all connected fd’s
If received, terminate signal:
 Close everything and exit
If a poll timeout no actually for 1 second:
 Compute how late MATT may be in completing a command

 If request to load MATT SW:
 Call Look4_work to send first command
 Analyze MATT status based on current MATT status:
 If idle:
 Look for new work
 Else a poll with some I/O event - read data from MATT or write for each Fd in the poll list
 If a read or connect event:

Service the read or connect
 If a read of data from the MATT:

Copy and analyze all data received so far
All complete lines go to a status area
 Incomplete lines are analyzed for possible request for a value. (MATT

ABI-U-NA-N-003
6 March 1998

4-33

 command responses are of the form variable: where user is supposed to react
 to the value and meaning of the variable ad later in a response)

 If a query value:
 If a CFL command and response to tabulate all values:

 return CR or $ depending on if a
CFL variable present
Else if current command has options:

Search for operand match
If found - send response:

 mark this opened motel as complete and mark this phrase as reported to.
If not responded to:
 Check special response list
If a special response:

Send appropriate character

Else - Send a CR - Generic response:
 If a read or connect event:
 End
 If a write event:

Write out as many bytes as allowed or as many bytes as are left in
external message

If all bytes sent:
Clear write poll flag

Else: Set write poll flag-will test for ability to write

MATT_CTRL:
Access MATT private and ABI shared memory
Initialized X
Create the Initial Control window
Load all data service types
Load each service’s satellite definitions
Load the list of defined Geo filters
Load the list of CI filters
Load the list of TIBS filters (SIDS)
Realize the main widget
Start an X timer to call Timer Callback
Call XX mainloop to service future X events

When the X timer expires:
Set button sensitivity depending on which window is active
If in process of activating the MATT:

Do next command until “did_real_work”
 Switch on the next command
 If values to command MATT:

Decode into a MATT command

ABI-U-NA-N-003
6 March 1998

4-34

Send to MATT
Set flag_did_real_work

Define the next command to switch on - end of switch
If did real work:

Describe actions to user in a status message -
End do:

If all work is done:
Write “activation complete” to user
Wait 5 seconds, then terminate

4.25 Angle to Satellite Computation (FINDGEOSAT) Functional Area Design

The FINDGEOSAT program computes the azimuth and elevation a ground point to a geo-
synchronous satellite .

4.25.1 Angle to Satellite Computation (FINDGEOSAT) Architecture

The program has four assumed satellite locators (West 23, West 100, East 72 and East 172) as well as
a user selectable input option. The user defines where he is (via GetPoint), which satellite he is
attempting to view, then presses “Compute” for an angular computation of line of sight. Negative or
near zero angles are usually a sign that the satellite cannot be seen from that point on the world.

4.25.2 Angle to Satellite Computation (yyy) Processing Description

Access Shared Memory
Initialize X
Get X resource values
Define the operator selectable widgets and the window
Realize the window
Call XX Mainloop to process all future X events

4.26 Expert Functions Functional Area Design

Those functions considered to be outside of normal operations are lumped under the “Expert
Functions” banner. This collection of programs has more human interaction then does the rest of ABI
and assumes that the user possesses the required level of expertise.

ABI-U-NA-N-003
6 March 1998

4-35

4.26.1 Expert Functions Architecture

The expert functions supported are tabulated in a program table inside of MSTS.C (called children).
Those programs tabulated after the adrgimp program are considered to be expert functions and are
presented in the expert list of the callbacks.c in MSTS. Chart imports and deletes are specified here
as are expert radio control operators (MATT filters, Quad Zebra expert function access).

Communications parameters can be checked and modified here and expert functions can be protected
by a password. Finally, a detailed, internal look at what the system contains can be seen by running
the expert functions Communications status option. The sizes and populations of numerous tables
can be viewed as well as detailed I/O throughput information.

4.26.2 Expert Functions Processing Description

The selected program initiates itself and presents the user with a basic MMII

The user makes choices and the MMI performs the action without destructive action safety: i.e.,
when the operator selects DTED DELETE, specifies a range of Latitudes and Longitudes to delete,
and then presses OK, no other requests are made to the user to be sure that the deletes are desire.

4.27 Client Workstation Support (DATASVC, CLIENTSVC) Functional Area Design

Where more than one ABI system is desired the workstations can be arranged with one workstation
as the server and the remaining workstation as clients.

4.27.1 Client Workstation Support (DATASVC, CLIENTSVC) Architecture

The DATASVE program operates as a TCP/IP data pusher to any CLIENTSVC programs that
connect. As changes are made in the server, copies of the data are sent to all clients. This service is
only for the data tabulated in GLOBAL memory tables and does not include user preferences or
symbol filters.

4.27.2 Client Workstation Support Processing Description

Access Shared Memory
Define a list of current readers, current SVC ports and work Queues.
Attempt to allocate the TCP/IP ports associated with various services -
Do forever:

Poll the service ports and current user connections
If received SIGTERM signal:

ABI-U-NA-N-003
6 March 1998

4-36

Disconnect from everyone and Quit program.
If any single point database has been updated:

Add to list of tables to send to all client SVC programs.
If updates in multi-row tables:

Add as n ran updates to list of table to send all client SVC programs.
If poll data from any connects:

Perform read or write as inferred in poll results
End do forever:
In the CLIENTSVE program:
Access Shared Memory
Determine which machine is the server

Do forever:
If terminate signal:

Close connections and exit
If not yet connected to server:

Attempt connection to server
If connection, get ready to read all table updates
Else (connected to data server)
Read a segment of a data command -
either the common header (CLNT_SRVR_HDR) or the data that follows a
particular message

 When completely, read header and data
Switch on message ID in header and perform selected table update, delete, or

control operation
Reset for next CNTL_SRVR_HDR read

4.28 System Shutdown Functional Area Design

When the user is finished with ABI, a complete system shutdown is performed. The function/script
in /abi/bin/msts_shutdown is performed so that power can be turned off without corrupting data or
disk.

4.28.1 System Shutdown Architecture

Currently, the MSTS-shutdown script runs SYNC followed by the system command HALT, which
has been coped and renamed /abi/bin/msts_halt. Other forms of shutting down the system can be
performed by changing either MSTS-shutdown or MSTS-halt.

ABI-U-NA-N-003
6 March 1998

5-1

5.0 Acronyms

2D... Two Dimensional

3D... Three Dimensional

AA .. Automatic Associator

ABI...Airborne Broadcast Intelligence

AOI... Area of Interest

ADRG... ARC Digitized Raster Graphics

AMC.. Air Mobility Command

CCS ..Combat Intelligence System (CIS) Core Software

CD .. Compact Disk

CDE.. Common Desktop Environment

CD-ROM... Compact Disk Read Only Memory

CIS..Combat Intelligence System

CPU ...Computer Processing Unit

CSCI... Computer Software Configuration Item

DMA.. Defense Mapping Agency

DOD-STD ...Department of Defense Standard

ELINT ...Electronic Intelligence

GB ...Gigabyte

GNC ... Global Navigation Charts

GPS .. Global Positioning System

GUPS.. Global Uninterruptable Power Supply

IDB...Integrated Data Base

I/O..Input/Output

IOP ... Integrated Communications Processing

IPC... Inter-Process Control

JCS ..Joint Chiefs of Staff

JNC.. Joint Navigation Charts

LAN.. Local Area Network

MHz... MegaHertz

MMI ...Man Machine Interface

ABI-U-NA-N-003
6 March 1998

5-2

MSI...Multi-Spectral Imagery

MSTS ...Multi Source Tactical System

NRT..Near Real Time

OM .. Object Manager

ONC .. Operation Navigation Charts

PPU ... Protocol Processing Unit

RADINT...Radio Detection and Ranging Intelligence

RAM...Read Access Memory

RF...Radio Frequency

SIDS .. Secondary Imagery Dissemination System

SIGINT.. Signal Intelligence

SDD...Software Design Document

TIBS ..Tactical Information Broadcast System

TBMCS ..Theater Battle Management Core Systems

TOR... Time of Receipt

TLM ..Topographic Line Maps

TPC ... Theater Pilotage Charts

TTA ..Tactical Information Broadcast (TIBS) TADIL Associator

U.. Unclassified

UIF ..User Interface

UHF..Ultra-High Frequency

USMTF ..U.S. Message Text Formatting

ABI-U-NA-N-003
6 March 1998

Appendix A Requirements Traceability

ABI-U-NA-N-003
6 March 1998

A-1

 ABI REQUIREMENTS

 User inputs from the 24 November 1997 ABI Technical Interface Meetings (TIM) in Fairfax,
VA are included in the requirements matrix and test cases. Inputs for software
improvements are organized into the following topic areas and include a list of
requirements by User ID Tracking Numbers.

 This Appendix lists the requirements and test cases applicable to the ABI system. Functional
areas have been defined for ABI software development and are listed below. Test
cases identify the functional area, test case number, test case name, and test objective
for each test. Specific test procedures are identified in the ABI Software Test
Document (ABI-AWACS-U-NA-N-001), 19 January 1998 (Revision 4).

PRF - Performance

ENV - Environment

DTB - Database

UIF - User Interface

MSG - Messaging

DSP - Displays

User inputs from the 24 November 1997 TIM are included in the requirements matrix and
test cases. These inputs for Software Improvements are organized into the following topic
areas and include a list of requirements by User ID Tracking Numbers.

1) More informative displays C15, C51

2) Easier Capabilities B04, C17, C50, C36, S05, S11, S13, S14

3) Relating threats to current position All Deleted at 11/24/98 TIM.

4) Better feedback to user C03, S10

5) Basic capabilities needing improvements. C04, C47, D22, D24, S12

The prefix code defining the originator of the user requirements is listed below.

Axx AWACS suggestions

Bxx AWACS suggestions not usable by AWACS but useful functions

Cxx AMC suggestions

Dxx Discrepancies from AWACS and AMC demos

ABI-U-NA-N-003
6 March 1998

A-2

Sxx Contractor suggestions

Table 1 identifies the ABI requirements and Table 2 provides a cross-reference of ABI
requirement to the test cases which satisfy them.

Table 1 Requirements

Requirement
Number

Requirement Test Method Test
Case

PRF-001 ABI shall receive an input of 30 contacts per second and no more
than 5 seconds shall elapse from contact receipt to map display.

Test 1.1

PRF-002 ABI shall maintain 24K tracks at any one time and 50K contacts
in 24 hours.

Test 1.2

PRF-003 ABI shall refresh the map at the rate of 5 maps per second. Test 1.1
PRF-004 ABI shall distribute displays and processing over multiple

workstations and multiple processors on the same workstation.
Defer 1.3

ENV-001 ABI shall be the single point of entry for Quad Zebra receiver
control output.

Defer 5.2-5.5

ENV-001 A ABI shall be the single point of entry for MATT receiver control
output.

Test 6.3

ENV-002 Solaris 2.5 shall be the operating system used for the ABI system. Observe 2.2
ENV-003 ABI shall use the CDE/Triteal desktop for its user workstation

interface.
Observe 2.3

ENV-004 ABI shall address the following issues:
startup/initialization
auto-upload of an NRT database for air-borne system
GPS system time synch
configurations issues, error logging, etc.

See Below N/A

DENV-004-01 ABI background processes shall be started upon user login. Test 7.0
DENV-004-02 ABI shall not require the user to logon when starting ABI. Test 7.0
DENV-004-04 ABI shall allow the user to set the system time. Defer 2.7
DENV-004-05 ABI disk space shall be properly partitioned. Observe 2.8
ENV-005 ABI shall run on a SUN Sparc Ultra2/200 MHz processor. Defer 2.9
ENV-005 A ABI shall run on a SUN Sparc Ultra2/300 MHz processor. Defer 2.9
DTB-001 ABI Displays shall interface with the ABI database to update the

track picture.
See Below N/A

ABI-U-NA-N-003
6 March 1998

A-3

Requirement
Number

Requirement Test
Method

Test
Case

DDTB-001-01 New contacts, groups and tracks shall be sent to the ABI
Displays.

Test 3.1

DDTB-001-02 Groups and tracks shall be sent to the ABI Displays. Test 3.2
DDTB-001-03 Delete notifications shall be sent to the ABI Displays. Test 3.3
DDTB-001-04 Delete notifications from ABI Displays shall be processed by the

ABI Data Fusion Engine.
Test 3.4

DTB-002 CIS shall provide the capability to take a save NRT on the ground
for transfer to ABI onboard.

Test 7.4

DDTB-002-02 CIS shall provide the capability to write an NRT snapshot to tape. Test 7.5
DTB-003 ABI shall allow filtering of data going to ABI Displays. Test 6.4
UIF-003 ABI shall integrate 3D imagery into ABI displays/maps. Defer 4.3
UIF-004 ABI shall provide the capability to load an IDB and NRT extract. Test 7.1-

7.4
MSG-001 ABI shall receive QuadZ output - TDDS, TOPS, TIBS, TADIL-

A.
Defer 5.2-

5.5
MSG-001 A ABI shall receive MATT output - TDDS, TOPS, TIBS, ODP. Test 6.3
DMSG-001-01 ABI shall receive data from a LAN connection. Defer 5.2-

5.5
DMSG-001-02 ABI shall receive and process TDDS data from a LAN

connection.
Defer 5.2

DMSG-001-03 ABI shall receive and process TIBS data from a LAN
connection.

Defer 5.3

DMSG-001-04 ABI shall receive and process TADIL-A data from a LAN
connection.

Defer 5.4

DMSG-001-05 ABI shall receive and process TOPS data from a LAN
connection.

Defer 5.5

MSG-002 ABI shall parse GPS messages. Defer 5.6
DSP-001 ABI shall provide a smooth scrolling digital map centered on

ownship location as represented by GPS input.
Defer 6.5-

6.47
DSP-002 ABI shall provide moving alert filters based on ABI aircraft

location.
Defer 6.4-

6.35
DSP-003 The ABI Displays function shall provide an interface for the user

to perform delete functions.
Test 6.14-

6.16
TBMCS SP0 1.1 Demonstrate upload capability of data from TBMCS using

CIS/AA to the ABI System. (Same requirement as DTB-002,
DTB-002-02, and UIF-004).

Test 7.1-
7-4

TBMCS SP0 1.2 Demonstrate correlation capability of ABI Test AA-
04

AWACS SPO 2.1a All testing will be performed on AWACS Standalone hardware Observe N/A

ABI-U-NA-N-003
6 March 1998

A-4

Requirement
Number

Requirement Test
Method

Test
Case

AWACS SPO 2.1b A MATT with external antenna will be connected to the AWACS
BI processor for tests.

Observe N/A

AWACS SPO 2.2 All testing will be performed using an agreed to test plan and
procedures. All testing for buy off will be performed using a
structured, step-by-step process in the presence of Government
witnesses recording observations.

Observe STD

AWACS SPO 2.3 Full start-up and initialization process beginning with power-on
(radio, processor, and crypto) and loading of hard drives and
other media.

Observe N/A

AWACS SPO 2.4a MATT control from the BI processor in all modes to include
radio initialization and filter settings for TDDS, TIBS, and
TADIXS-B (OPB-TOPS)

Test 6.3

AWACS SPO 2.4b The ability to download MATT software from the removable
hard drive through the processor.

Test 6.3

AWACS SPO 2.4c The ability to download files from the removable hard drive that
define MATT filter settings.

Test 6.1

AWACS SPO 2.5 Simultaneous operation in TDDS, TIBS and TADIXS-B (OBP-
TOPS).

Test 6.3

AWACS SPO 2.6 MMI changes requested by the AWACS SPO. See
Below

N/A

AWACS SPO 2.6a (A02) - Display parameters in Freq, PRI, PW order with ELNOT
at end of line or on next line.

Test 6.15

AWACS SPO 2.6b (A09) - Selectable (smaller) icons. Test 6.7
AWACS SPO 2.6c (B04) - User selectable object(s) for Bullseye or compass rose

centering, Threat Alert, track recording, and GPS like position
readout, map centering, and 3D flying.

Test 6.18

AWACS SPO 2.7 Display and discrimination of both real and exercise tracks. Test 6.14
AWACS SPO 2.8 User selectable display of entities in the IDB. Test AA-
AWACS SPO 2.9a One Day Orientation Course. Observe N/A
AWACS SPO 2.9b Software User’s Manual (SUM). Observe N/A
AWACS SPO 2.9c Software Test Description (STD). Observe N/A
AWACS SPO 2.9d Software Design Document (SDD). Observe N/A

ABI-U-NA-N-003
6 March 1998

A-5

Requirement Number Requirement Test
Method

Test
Case

AWACS SPO 2.9e Year 2000 Assessment. Observe N/A
AWACS SPO 2.9f ABI_AA ICD change documentation. Observe N/A
AWACS SPO 2.10 Test Report. The marked up STD will suffice as long

as it documents the test results and performance
baseline.

Observe N/A

AMC 3.1 Demonstration Plan. See AWACS SPO 2.2. Observe STD
AMC 3.2 Threshold Requirements. Test STD
AMC 3.3 Verification of Test Functionality. Test STD
AMC 3.4 MMI changes requested by the AMC. See Below N/A
AMC 3.4a (C03) - Reporting on radio channel basis of possible

trouble with radio.
Test 6.32

AMC 3.4b (C04) - Draw Kill & See Me rings on map when track
center off map.

Test 6.39

AMC 3.4c (C15) - Add a definition pop-up in the TDDS symbol
filter display to describe each symbol/system.

Test 6.4

AMC 3.4d (C17) - Corridor drawing made easy; add possible
highest point (s) within identified.

Test 6.20

AMC 3.4e (C36) - Manual entry of threats using system names. Test 6.25
AMC 3.4f (C47) - Add automatic robustness to system

initialization for file system integrity checks.
N/A

AMC 3.4g (C50) - Rectangular AOI draws made easy. Test 6.19
AMC 3.4h (C51) - User selectable velocity vector presented on

GPS symbol to show heading.
Defer 6.40

Demo Discrep 4.1 (D22) - Fix line draws which cross map. Test 6.39
Demo Discrep 4.2 (D24) - Fix TIBS age computation. Defer
Contractor 5.1 (S05) - New maps centered using last centering

operation.
Test 6.39

Contractor 5.2 (S10) - Display :00 instead of blanks in status for 0
time.

Test 6.11

Contractor 5.3 (S11) - Augment WDBMAP functionality during
coverage pulldown.

Test 6.34

Contractor 5.4 (S12) - Remove TIBS query command (net chatter). Observe N/A
Contractor 5.5 (S13) - Track select highlight changing as step through

tracks.
Test 6.15

Contractor 5.6 (S14) - Augment WDBMAP functionality during
coverage pulldown.

Test 6.34

ABI-U-NA-N-003
6 March 1998

A-6

Table 2 maps the requirements to the test cases which satisfy them.

ABI-U-NA-N-003
6 March 1998

A-7

Table 2 Requirements - Test Case Cross Reference

Requirement Number Test Case
Number

PRF-001 1.1
PRF-002 1.2
PRF-003 1.1
PRF-004 1.3
ENV-001 5.2- 5.5
ENV-001 A 6.3
ENV-002 2.2
ENV-003 2.3
ENV-004 See Below
DENV-004-01 7.0
DENV-004-02 7.0
DENV-004-04 2.7
DENV-004-05 2.8
ENV-005 2.9
ENV-005 A 2.9
DTB-001 3.1- 3.4
DDTB-001-01 3.1
DDTB-001-02 3.2
DDTB-001-03 3.3
DDTB-001-04 3.4
DTB-002 7.4
DDTB-002-02 7.5
DTB-003 6.4
UIF-003 4.3
UIF-004 7.1-7.2
MSG-001 5.2- 5.5
MSG-001 A 6.3
DMSG-001-01 5.2- 5.5
DMSG-001-02 5.2
DMSG-001-03 5.3
DMSG-001-04 5.4
DMSG-001-05 5.5

ABI-U-NA-N-003
6 March 1998

A-8

Requirement Number Test Case
Number

MSG-002 5.6
DSP-001 6.5-6.47
DSP-002 6.4-6.35
DSP-003 6.14-6.16
TBMCS SPO 1.1 7.1-7.4
TBMCS SPO 1.2 AA-04
AWACS SPO 2.1a Observe
AWACS SPO 2.1b Observe
AWACS SPO 2.2c Observe
AWACS SPO 2.3 Observe
AWACS SPO 2.4a 6.3
AWACS SPO 2.4b 6.3
AWACS SPO 2.4c 6.1
AWACS SPO 2.5 6.3
AWACS SPO 2.6a (A02) 6.15
AWACS SPO 2.6b (A09) 6.7
AWACS SPO 2.6c (B04) 6.18
AWACS SPO 2.7 6.14
AWACS SPO 2.8 AA-03
AWACS SPO 2.9a Observe
AWACS SPO 2.9b Observe
AWACS SPO 2.9c Observe
AWACS SPO 2.9d Observe
AWACS SPO 2.9e Observe
AWACS SPO 2.9f Observe
AWACS SPO 2.10 Observe
AMC 3.1 Observe
AMC 3.2 STD
AMC 3.3 STD
AMC 3.4a(C03) 6.32
AMC 3.4b (C04) 6.39
AMC 3.4c (C15) 6.4
AMC 3.4d (C17) 6.20
AMC 3.4e (C36) 6.25
AMC 3.4f (C47) N/A
AMC 3.4g (C50) 6.19
AMC 3.4h (C51) 6.40
Demo Discrep 4.1 (D22) 6.39
Requirement Number Test Case

ABI-U-NA-N-003
6 March 1998

A-9

Number
Demo Discrep 4.2 (D24) Defer
Contractor 5.1 (S05) 6.39
Contractor 5.2 (S10) 6.11
Contractor 5.3 (S11) 6.34
Contractor 5.4 (S12) Observe
Contractor 5.5 (S13) 6.15
Contractor 5.6 (S14) 6.34

